Studentpad

JEE-MAIN 2021-22

Time : 90 Min	Pre : Full Portion Paper	Marks : 120
---------------	--------------------------	-------------

01) The line L given by $\frac{x}{x} + \frac{y}{y} = 1$ passes through	4) -1
the point (13, 32). The line K is parallel to L and	06) A galvanometer having a coil resistance of
has the equation $\frac{x}{x} + \frac{y}{y} = 1$ Then the distance	100 Ω gives a full scale deflection when a current
$c = \frac{1}{3}$	of 1 mA is passed through it. The value of the
between L and K is	into ammeter giving a full scale deflection for a
1) $\frac{17}{$	current of 10 A, is
$\sqrt{15}$	1) 0.01 Ω
2) $\sqrt{17}$	2) 0.1Ω
23	3) 2.0
$\frac{3}{\sqrt{15}}$	4) 30
. 23	1) 0.22
4) $\frac{1}{\sqrt{17}}$	07) A signal of 5 kHz frequency is amplitude
	modulated on a carrier wave of frequency 2MHz.
02) The transverse displacement Y (x, t) of a wave	The frequencies of the resultant signal is/are
on a string is given by $v(\mathbf{x}, t) = e^{-(a\mathbf{x}^2 + bt^2 + 2\sqrt{abxt})}$.	1) 2 MHz only
This represents a	2) 2000 kHz and 1995 kHz
	3) 2005 KHz 2000 kHz and 1995 kHz 4) 2005 KHz and 1995 kHz
1) Wave moving in -x direction with speed $\sqrt{\frac{D}{T}}$	4) 2003 KHZ and 1993 KHZ
va 	08) Let α , β be real and z be a complex number. If
2) Wave moving in + x direction with speed $\sqrt{\frac{a}{b}}$	$z^2 + \alpha z + \beta = 0$ has two distinct roots on the line Re
	(z) = 1, then it is necessary that
3) Standing wave of frequency $\frac{1}{\sqrt{b}}$	1) $ \beta = 1$
4) Standing wave of frequency \sqrt{b}	2) $\beta \in (-1, 0)$
	3) $\beta \in (1, \infty)$
03) According to molecular orbital theory, which of	4) $\beta \in (0, 1)$
the following will not be a a viable molecule ?	(0, 1)
1) He_2^+	09) In a large building, there are 15 bulbs of 40 W
2) He_2^{2+}	5 bulbs of 100 W, 5 fans of 80 W and 1 heater of 1
3) H_2^-	kW. The voltage of the electric mains is 220 V. The
<i>d</i>) H ²⁻	minimum capacity of the main fuse of the building
	will be
04) A stream of electrons from a heated filament	1) 14 A 2) 12 A
was passed between two charged plates kept at a	3) 10 A
potential difference V esu. If e and m are charge	4) 8 A
and mass of an electron, respectively, then value of	
h/λ (where, λ is wavelength associated with	10) If the tangent at (1, 7) to the curve $x^2 = y - 6$
electron wave) is given by	touches the circle $x^2 + y^2 + 16x + 12y + c = 0$, then
1) 2 meV	the value of c is
2) filev 2) $\sqrt{2} = \sqrt{2}$	1) 185
$3) \sqrt{2 \text{ mev}}$	2) 195
4) √meV	3) 85
	4) 95
05) $\int_{-\infty}^{3\pi/4} \frac{dx}{dx}$ is equal to	1100 \mathbf{p}^0 1000 \mathbf{p}^0
$J_{\pi/4}$ 1 + cos x	11) Given, $E_{cl_2/Cl^-} = 1.36 \text{ V}, E_{Cr^{3+}/Cr} = -0.74 \text{ V}$
1) 4 2) 2	$E^{0}_{Cr_{2}O^{2^{-}}_{7}/Cr^{3+}} = 1.33 \text{ V}, E^{0}_{MnO^{-}_{4}/Mn^{2+}} = 1.51 \text{ V}$
3) -2	Among the following, the strongest reducing agent
-	

The correct order of $S_N 1$ reactivity is 1) (II) > (III) > (I)

1) (II) > (III) > (I) 2) (III) > (II) > (I) 3) (II) > (I) > (II) > (III) 4) (I) > (I) > (III)

4) (I) > (II) > (III)

20) Question contain Statement I and Statement II. Of the four choices given after the statdements, choose the one that best describes the two statements.

Statement I: When ultraviolet light is incident on a photocell, its stopping potential is V_0 and the maximum kinetic energy of the photoelectrons is K_{max} . When the ultraviolet light is replaced by

X-rays, both V_0 and K_{max} increase.

Statement II: Photoelectrons are emitted with speeds ranging from zero to a maximum value because of range of frequencies present in the incident light.

1) Statement I is true, Statement II is true; Statement II is not the correct explanation of Statement I.

2) Statement I is true, Statement II is true; Statement II is the correct explanation of Statement I.

3) Statement I is false, Statement II is true.

4) Statement I is true, Statement II is false.

21) The area of the region described by $A = \{(x, y) : x^2 + y^2 \le 1 \text{ and } y^2 \le 1 - x\}$ is

1)	$\frac{\pi}{2} + \frac{4}{3}$	
2)	$\frac{\pi}{2} + \frac{2}{3}$	
3)	$\frac{\pi}{2} - \frac{2}{3}$	
4)	$\frac{\pi}{2}-\frac{4}{3}$	

22) For the non-stoichiometric reaction $2A + B \rightarrow C + D$, the following kinetic data were obtained in three separate experiments, all at 298 K.

	Initial <u>concen tration</u> (A)	Initial concentratio n (B)	Initial rate of formation of C (mol L ⁻¹ S ⁻¹)
(j)	0.1 M	0.1 M	1.2×10 ⁻³
(ii)	0.1 M	0.2 M	1.2×10 ⁻³
(iii)	0.2 M	0.1 M	2.4×10 ⁻³

The rate law for the formation of C is

1)
$$\frac{dC}{dt} = K[A][B]^{2}$$

2)
$$\frac{dC}{dt} = K[A]^{2}[B]$$

3) $\frac{dC}{dt} = K[A][B]$ 4) $\frac{dC}{dt} = K[A]$

23) A compound with molecular mass 180 is acylated with CH_3COCI to get a compound with molecular mass 390. The number of amino groups present per molecule of the former compound is 1) 6

- 2)5
- 3)́ 4

4) 2

24) In the context of the Hall-Heroult process for the extraction of Al, which of the following statements is false?

1) Al_2O_3 is mixed with CaF_2 which lowers the melting int of the mixture and brings conductivity 2) CO and CO_2 are produced in this process

3) Al^{3+} is reduced at the cathode to form Al

4) Na_3AlF_6 serves as the electrolyte

25) Let $x_1, x_2, ..., x_n$ be n observations and \overline{x} be their arithmetic mean and σ^2 be the variance. Statement I Variance of $2x_1, 2x_2, ..., 2x_n$ is $4\sigma^2$. Statement II Arithmetic mean $2x_1, 2x_2, ..., 2x_n$ is $4\overline{x}$

1) Statement I is true, Statement II is true; Statement II is not a correct explanation for Statement I

2) Statement I is true, Statement II is true; Statement II is a correct explanation for Statement I

3) Statement I is false, Statement II is true4) Statement I is true, Statement II is false

26) $\int_0^{\pi} [\text{Cot x}] dx$, [] denotes the greatest integer function, is equal to

- 1) $\frac{\pi}{2}$
- 2) $-\frac{\pi}{2}$
- 2 3) -1
- 4) 1

27) The density of a material in the shape of a cube is determined by measuring three sides of the cube and its mass. If the relative errors in measuring the mass and length are respectively 1.5% and 1%, the maximum error in determining the density is

- 1) 6%
 2) 4.5%
- 3) 3.5%
- 4) 2.5%

28) The pH of a 0.1 molar solution of the acid HQ

is 3. The value the ionisation constant, $\, K_a \,$ of the acid is 1) 1×10^{-7} 2) 1×10^{-3} 3) 1×10^{-5} 4) 3×10^{-1} $\lim_{x \to 0} \frac{\left(1 - \cos 2x\right) \left(3 + \cos x\right)}{x \tan 4 x} \text{ is equal to}$ 29) 1) $\frac{1}{2}$ 2) 3 3) 2 4) 4 30) If $A = \begin{bmatrix} 5a & -b \\ 3 & 2 \end{bmatrix}$ and A adj $A = AA^{T}$, then 5a + b is equal to 1) 13 2) 5 3) 4 4) -1 June 1